5: Trigonometric functions review | Course - StudyGenius | StudyGenius

Course Progress

Victories 0/71
Finished 0/71

StudyGenius Logo

5: Trigonometric functions review

Choose your name

NebulaDrift

Your opponent is:

NebulaDrift

1,424 pts

3 days ago

Choose your name

NebulaDrift

Your opponent is

NebulaDrift

1,424 pts
3 days ago
The quiz will be on the following text — learn it for the best chance to win.
Trigonometric Functions Review

Trigonometric functions are periodic functions essential for modeling oscillations, waves, and circular motion. They are defined using the unit circle (radius 1) or right triangles:

  • Sine (sin θ): yy-coordinate on the unit circle, or opposite/hypotenuse.
  • Cosine (cos θ): xx-coordinate, or adjacent/hypotenuse.
  • Tangent (tan θ): sin θ/cos θ, or opposite/adjacent.
    Reciprocal functions include cosecant (csc θ), secant (sec θ), and cotangent (cot θ).
Key Properties and Graphs
  • Periodicity:
    • sin(θ+2π)=sinθ\sin(\theta + 2\pi) = \sin \theta, cos(θ+2π)=cosθ\cos(\theta + 2\pi) = \cos \theta (period 2π2\pi).
    • tan(θ+π)=tanθ\tan(\theta + \pi) = \tan \theta (period π\pi).
  • Amplitude and Range:
    • sin and cos: Amplitude =1= 1, Range [1,1][-1, 1].
    • tan: No amplitude, Range (,)(-\infty, \infty), with vertical asymptotes at θ=π2+kπ\theta = \frac{\pi}{2} + k\pi.
  • Graph Characteristics:
    • sin θ: Starts at (0,0)(0,0), peaks at (π/2,1)(\pi/2, 1).
    • cos θ: Starts at (0,1)(0,1), crosses zero at π/2\pi/2.
    • tan θ: Asymptotes at π/2\pi/2, crosses (0,0)(0,0).
Fundamental Identities

Memorize these for integration/differentiation:

  • Pythagorean:
    sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1,
    1+tan2θ=sec2θ1 + \tan^2\theta = \sec^2\theta,
    1+cot2θ=csc2θ1 + \cot^2\theta = \csc^2\theta.
  • Reciprocal:
    cscθ=1sinθ\csc\theta = \frac{1}{\sin\theta}, secθ=1cosθ\sec\theta = \frac{1}{\cos\theta}, cotθ=1tanθ\cot\theta = \frac{1}{\tan\theta}.
  • Even-Odd:
    sin(θ)=sinθ\sin(-\theta) = -\sin \theta (odd), cos(θ)=cosθ\cos(-\theta) = \cos \theta (even), tan(θ)=tanθ\tan(-\theta) = -\tan \theta (odd).
  • Co-function:
    sin(π2θ)=cosθ\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta, tan(π2θ)=cotθ\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta.
Special Angles

Recall exact values for common angles using the unit circle or triangles:

θ (rad)00π/6\pi/6π/4\pi/4π/3\pi/3π/2\pi/2
sin θ001/21/22/2\sqrt{2}/23/2\sqrt{3}/211
cos θ113/2\sqrt{3}/22/2\sqrt{2}/21/21/200
tan θ003/3\sqrt{3}/3113\sqrt{3}undef.
Solving Basic Equations

Solve equations like sinx=a\sin x = a (1a1-1 \leq a \leq 1) using reference angles and symmetry:

  1. Find solutions in [0,2π)[0, 2\pi):
    • sinx=a\sin x = a → Principal solution x=arcsinax = \arcsin a, second solution x=πarcsinax = \pi - \arcsin a.
    • cosx=a\cos x = ax=arccosax = \arccos a and x=2πarccosax = 2\pi - \arccos a.
  2. Extend to all reals by adding 2kπ2k\pi (or kπk\pi for tan).
    Example: sinx=12\sin x = \frac{1}{2} → Solutions: x=π6+2kπx = \frac{\pi}{6} + 2k\pi, x=5π6+2kπx = \frac{5\pi}{6} + 2k\pi.

Ensure fluency with these concepts, as they underpin derivatives, integrals, and applications in later sections.