2: Dot product and norms | Course - StudyGenius | StudyGenius

Course Progress

Victories 0/46
Finished 0/46

StudyGenius Logo

2: Dot product and norms

Choose your name

Tesla Fanatic

Your opponent is:

Tesla Fanatic

1,902 pts

4 days ago

Choose your name

Tesla Fanatic

Your opponent is

Tesla Fanatic

1,902 pts
4 days ago
The quiz will be on the following text — learn it for the best chance to win.
Section 1.2: Dot Product and Norms

Dot Product (Scalar Product)
The dot product of two vectors u=[u1,u2,,un]\mathbf{u} = [u_1, u_2, \dots, u_n] and v=[v1,v2,,vn]\mathbf{v} = [v_1, v_2, \dots, v_n] in Rn\mathbb{R}^n is defined as:

uv=i=1nuivi=u1v1+u2v2++unvn.\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^n u_i v_i = u_1v_1 + u_2v_2 + \cdots + u_nv_n.

Key Properties:

  • Commutative: uv=vu\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}
  • Distributive: u(v+w)=uv+uw\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}
  • Bilinearity: Scalars factor out: (cu)v=c(uv)(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})
  • Relation to Angles: uv=uvcosθ\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta, where θ\theta is the angle between u\mathbf{u} and v\mathbf{v}.

Geometric Insight:

  • Orthogonality: uv=0\mathbf{u} \cdot \mathbf{v} = 0 if and only if u\mathbf{u} and v\mathbf{v} are perpendicular (when u,v0\mathbf{u}, \mathbf{v} \neq \mathbf{0}).
  • Projections: The projection of u\mathbf{u} onto v\mathbf{v} is projvu=(uvvv)v\text{proj}_{\mathbf{v}} \mathbf{u} = \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v}.

Vector Norms
A norm measures a vector’s magnitude. The Euclidean norm (2\ell_2-norm) is derived from the dot product:

u2=uu=u12+u22++un2.\|\mathbf{u}\|_2 = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + \cdots + u_n^2}.

Other Common Norms:

  • 1\ell_1-norm (Manhattan norm): u1=u1+u2++un\|\mathbf{u}\|_1 = |u_1| + |u_2| + \cdots + |u_n|
  • \ell_\infty-norm (Maximum norm): u=max(u1,u2,,un)\|\mathbf{u}\|_\infty = \max(|u_1|, |u_2|, \dots, |u_n|)

Properties of Norms:

  1. u0\|\mathbf{u}\| \geq 0, and u=0\|\mathbf{u}\| = 0 iff u=0\mathbf{u} = \mathbf{0}.
  2. cu=cu\|c\mathbf{u}\| = |c| \cdot \|\mathbf{u}\| for any scalar cc.
  3. Triangle Inequality: u+vu+v\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.

Key Inequalities

  • Cauchy-Schwarz Inequality:
    uvu2v2|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\|_2 \|\mathbf{v}\|_2.
    Equality holds iff u\mathbf{u} and v\mathbf{v} are linearly dependent.
  • Triangle Inequality (for norms): As above.

Applications

  • Normalization: A unit vector in the direction of u\mathbf{u} is u^=u/u2\hat{\mathbf{u}} = \mathbf{u} / \|\mathbf{u}\|_2.
  • Distance: Euclidean distance between u\mathbf{u} and v\mathbf{v} is uv2\|\mathbf{u} - \mathbf{v}\|_2.
  • Orthogonality: Central to least-squares solutions (Section 7) and diagonalization (Section 10).