3: Matrix operations | Course - StudyGenius | StudyGenius

Course Progress

Victories 0/39
Finished 0/39

StudyGenius Logo

3: Matrix operations

Choose your name

NebulaCloud

Your opponent is:

NebulaCloud

1,694 pts

1 day ago

Choose your name

NebulaCloud

Your opponent is

NebulaCloud

1,694 pts
1 day ago
The quiz will be on the following text — learn it for the best chance to win.

Section 1: Systems and Matrices - 3: Matrix Operations

Matrix operations extend arithmetic to arrays of numbers, forming the computational backbone of linear algebra. Understanding these rules is essential for solving linear systems and beyond.

Addition and Subtraction: Matrices must be the same size (mm rows ×\times nn columns). Add or subtract corresponding elements. For matrices A\mathbf{A} and B\mathbf{B}:

A+B=[aij+bij]\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}] AB=[aijbij]\mathbf{A} - \mathbf{B} = [a_{ij} - b_{ij}]

Properties include commutativity (A+B=B+A\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}) and associativity (A+(B+C)=(A+B)+C\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}).

Scalar Multiplication: Multiply every element of a matrix by a scalar (real number) cc:

cA=[caij]c\mathbf{A} = [c \cdot a_{ij}]

Scalars distribute over matrix addition: c(A+B)=cA+cBc(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}.

Matrix Multiplication: The product AB\mathbf{AB} is defined only if A\mathbf{A} is m×nm \times n and B\mathbf{B} is n×pn \times p (columns of A\mathbf{A} = rows of B\mathbf{B}). The result is an m×pm \times p matrix. The element in row ii, column jj of AB\mathbf{AB} is computed by taking the dot product of row ii of A\mathbf{A} and column jj of B\mathbf{B}:

(AB)ij=k=1naikbkj(sum from k=1 to n)(\mathbf{AB})_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad \text{(sum from } k=1 \text{ to } n\text{)}

Key properties:

  • Associative: (AB)C=A(BC)(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})
  • Distributive: A(B+C)=AB+AC\mathbf{A}(\mathbf{B}+\mathbf{C}) = \mathbf{AB} + \mathbf{AC} and (A+B)C=AC+BC(\mathbf{A}+\mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}
  • NOT Commutative: ABBA\mathbf{AB} \neq \mathbf{BA} in general (even if both products exist).
  • Identity Matrix: The n×nn \times n identity matrix In\mathbf{I}_n (1s on diagonal, 0s elsewhere) acts like 1: AI=A\mathbf{A}\mathbf{I} = \mathbf{A} and IA=A\mathbf{I}\mathbf{A} = \mathbf{A} for compatible A\mathbf{A}.

Transpose: The transpose of an m×nm \times n matrix A\mathbf{A}, denoted A\mathbf{A}^\top, is the n×mn \times m matrix formed by swapping rows and columns: (A)ij=aji(\mathbf{A}^\top)_{ij} = a_{ji}. Properties include:

(A)=A(\mathbf{A}^\top)^\top = \mathbf{A} (A+B)=A+B(\mathbf{A} + \mathbf{B})^\top = \mathbf{A}^\top + \mathbf{B}^\top (cA)=cA(c\mathbf{A})^\top = c \mathbf{A}^\top (AB)=BA(note the order reversal!)(\mathbf{AB})^\top = \mathbf{B}^\top \mathbf{A}^\top \quad \text{(note the order reversal!)}

Critical Considerations:

  • Dimension Mismatch: Attempting addition/subtraction on different-sized matrices or multiplication where columns of first \neq rows of second is undefined.
  • Zero Matrix: The matrix 0\mathbf{0} (all zeros) acts as the additive identity: A+0=A\mathbf{A} + \mathbf{0} = \mathbf{A}.