1: Vector calculus | Course - StudyGenius | StudyGenius

Course Progress

Victories 0/39
Finished 0/39

StudyGenius Logo

1: Vector calculus

Choose your name

MysticPulse

Your opponent is:

MysticPulse

1,337 pts

5 days ago

Choose your name

MysticPulse

Your opponent is

MysticPulse

1,337 pts
5 days ago
The quiz will be on the following text — learn it for the best chance to win.

Section 1: Foundations – Vector Calculus

Vector calculus extends basic calculus to vector fields, providing essential tools for describing physical phenomena like fluid flow and electromagnetism. Mastery of vector operations and their geometric interpretations is crucial.

1. Vector Operations:

  • Dot Product (Scalar Product): AB=ABcosθ=AxBx+AyBy+AzBz\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|\cos\theta = A_xB_x + A_yB_y + A_zB_z. It measures projection and work done. Orthogonality: AB=0\vec{A} \cdot \vec{B} = 0.
  • Cross Product (Vector Product): A×B=i^j^k^AxAyAzBxByBz=(AyBzAzBy)i^+(AzBxAxBz)j^+(AxByAyBx)k^\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = (A_yB_z - A_zB_y)\hat{i} + (A_zB_x - A_xB_z)\hat{j} + (A_xB_y - A_yB_x)\hat{k}. Result is perpendicular to A\vec{A} and B\vec{B} (right-hand rule), magnitude ABsinθ|\vec{A}||\vec{B}|\sin\theta equals area of parallelogram spanned. Parallelism: A×B=0\vec{A} \times \vec{B} = \vec{0}.
  • Scalar Triple Product: A(B×C)=B(C×A)=C(A×B)\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B}). Represents volume of parallelepiped. Vectors coplanar if zero.

2. Differential Operators:

  • Gradient (f\nabla f): For scalar field f(x,y,z)f(x,y,z), f=fxi^+fyj^+fzk^\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}. Points toward steepest ascent; a vector field.
  • Divergence (F\nabla \cdot \vec{F}): For vector field F=Fxi^+Fyj^+Fzk^\vec{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{k}, F=Fxx+Fyy+Fzz\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}. Measures "source strength" (flux per unit volume) at a point. Scalar result.
  • Curl (×F\nabla \times \vec{F}): ×F=i^j^k^/x/y/zFxFyFz\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ F_x & F_y & F_z \end{vmatrix}. Measures local rotation/circulation density ("curliness"). Vector result. Irrotational field if ×F=0\nabla \times \vec{F} = \vec{0} (implies F=ϕ\vec{F} = \nabla \phi).

3. Integral Theorems (Relate derivatives to integrals):

  • Gauss's Divergence Theorem: Relates flux through a closed surface SS to divergence within enclosed volume VV: SFdS=V(F)dV\oiint_S \vec{F} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{F}) dV Essential for electromagnetism (Gauss's Law) and fluid dynamics.
  • Stokes' Theorem: Relates circulation around a closed curve CC to curl through any surface SS bounded by CC: CFdr=S(×F)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S} Key for Faraday's Law and conservative fields (Fdr=0\oint \vec{F} \cdot d\vec{r} = 0 if ×F=0\nabla \times \vec{F} = \vec{0}).

4. Line and Surface Integrals:

  • Line Integral (Work): CFdr=abF(r(t))r(t)dt\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt. Computes work done by F\vec{F} along path CC.
  • Surface Integral (Flux): SFdS=DF(r(u,v))(ru×rv)dudv\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_u \times \vec{r}_v) du dv. Computes flux of F\vec{F} through surface SS.