The quiz will be on the following text — learn it for the best chance to win.
Complex Numbers Review
Complex numbers extend the real number system to solve equations like x2+1=0. A complex number z is written as z=x+iy, where x,y∈R and i=−1 (the imaginary unit). Here, x=Re(z) is the real part, and y=Im(z) is the imaginary part.
Key Representations
Cartesian Form: z=x+iy.
Polar Form: z=r(cosθ+isinθ), where:
Modulus: r=∣z∣=x2+y2 (distance from origin in the complex plane).
Argument: θ=arg(z) (angle with the positive real axis, defined modulo 2π). The principal value is usually in (−π,π].
Exponential Form: z=reiθ via Euler’s formula:
eiθ=cosθ+isinθ.
Operations
Addition/Subtraction: Combine real and imaginary parts: (a+ib)±(c+id)=(a±c)+i(b±d).
Multiplication: Use i2=−1: (a+ib)(c+id)=(ac−bd)+i(ad+bc).
In polar form: ∣z1z2∣=∣z1∣∣z2∣, arg(z1z2)=arg(z1)+arg(z2).
Division: Multiply numerator and denominator by the complex conjugatezˉ=x−iy:
z2z1=∣z2∣2z1z2ˉ,∣z1/z2∣=∣z1∣/∣z2∣,arg(z1/z2)=arg(z1)−arg(z2).
de Moivre’s Theorem: For integer n,
(cosθ+isinθ)n=cos(nθ)+isin(nθ).
Roots: Solutions to wn=z=reiθ are:
wk=r1/n(cos(nθ+2kπ)+isin(nθ+2kπ)),k=0,1,…,n−1.
These are equally spaced on a circle of radius r1/n in the complex plane.