1: Complex numbers review | Course - StudyGenius | StudyGenius

Course Progress

Victories 0/30
Finished 0/30

StudyGenius Logo

1: Complex numbers review

Choose your name

CrystalSage

Your opponent is:

CrystalSage

1,616 pts

2 days ago

Choose your name

CrystalSage

Your opponent is

CrystalSage

1,616 pts
2 days ago
The quiz will be on the following text — learn it for the best chance to win.

Complex Numbers Review

Complex numbers extend the real number system to solve equations like x2+1=0x^2 + 1 = 0. A complex number zz is written as z=x+iyz = x + iy, where x,yRx, y \in \mathbb{R} and i=1i = \sqrt{-1} (the imaginary unit). Here, x=Re(z)x = \text{Re}(z) is the real part, and y=Im(z)y = \text{Im}(z) is the imaginary part.

Key Representations
  1. Cartesian Form: z=x+iyz = x + iy.
  2. Polar Form: z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta), where:
    • Modulus: r=z=x2+y2r = |z| = \sqrt{x^2 + y^2} (distance from origin in the complex plane).
    • Argument: θ=arg(z)\theta = \arg(z) (angle with the positive real axis, defined modulo 2π2\pi). The principal value is usually in (π,π](-\pi, \pi].
  3. Exponential Form: z=reiθz = re^{i\theta} via Euler’s formula: eiθ=cosθ+isinθ.e^{i\theta} = \cos \theta + i \sin \theta.
Operations
  • Addition/Subtraction: Combine real and imaginary parts:
    (a+ib)±(c+id)=(a±c)+i(b±d)(a + ib) \pm (c + id) = (a \pm c) + i(b \pm d).
  • Multiplication: Use i2=1i^2 = -1:
    (a+ib)(c+id)=(acbd)+i(ad+bc)(a + ib)(c + id) = (ac - bd) + i(ad + bc).
    In polar form: z1z2=z1z2|z_1 z_2| = |z_1||z_2|, arg(z1z2)=arg(z1)+arg(z2)\arg(z_1 z_2) = \arg(z_1) + \arg(z_2).
  • Division: Multiply numerator and denominator by the complex conjugate zˉ=xiy\bar{z} = x - iy: z1z2=z1z2ˉz22,z1/z2=z1/z2,arg(z1/z2)=arg(z1)arg(z2).\frac{z_1}{z_2} = \frac{z_1 \bar{z_2}}{|z_2|^2}, \quad |z_1/z_2| = |z_1|/|z_2|, \quad \arg(z_1/z_2) = \arg(z_1) - \arg(z_2).
Essential Properties
  • Modulus: z0|z| \geq 0, z=0    z=0|z| = 0 \iff z = 0, z1z2=z1z2|z_1 z_2| = |z_1||z_2|, z1+z2z1+z2|z_1 + z_2| \leq |z_1| + |z_2| (triangle inequality).
  • Conjugate: z1±z2=z1ˉ±z2ˉ\overline{z_1 \pm z_2} = \bar{z_1} \pm \bar{z_2}, z1z2=z1ˉz2ˉ\overline{z_1 z_2} = \bar{z_1} \bar{z_2}, zzˉ=z2z \bar{z} = |z|^2.
  • de Moivre’s Theorem: For integer nn, (cosθ+isinθ)n=cos(nθ)+isin(nθ).(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).
  • Roots: Solutions to wn=z=reiθw^n = z = re^{i\theta} are: wk=r1/n(cos(θ+2kπn)+isin(θ+2kπn)),k=0,1,,n1.w_k = r^{1/n} \left( \cos \left( \frac{\theta + 2k\pi}{n} \right) + i \sin \left( \frac{\theta + 2k\pi}{n} \right) \right), \quad k = 0, 1, \dots, n-1. These are equally spaced on a circle of radius r1/nr^{1/n} in the complex plane.